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What is a feature

» Track a point on a set as a camera moves around during a shot

> Automatically estimate the 3D path of a camera as it moves around
a scene: matchmoving

» Not every point in the scene is a good choice for tracking

Features: regions of an image that can be reliably located in
other images of the same scene

> Interest points, keypoints, tie points

Detecting, describing, matching, and tracking



Feature tracking

A subset of the more general problem of visual tracking

Differeces

» Visual trackers maintain a probabilistic representation of an object’s
state, e.g., Kalman filters

» Wide-baseline case: images are taken from cameras that are
physically far apart, whereas visual tracking generally assumes the
camera moves only slightly between images



Feature detection and description

Detector

» deciding which image regions are sufficiently distinctive

Descriptor

» deciding how to represent the image information inside each region
for later matching



Properties of local features

A square block of pixels centered at a certain location in an
image

» Repeatability

» Aperture problem

» Nearly-constant-intensity patch, edge, corner, blob




Harris corners

» H. Moravec.” Obstacle avoidance and navigation in the real world by
a seeing robot rover.” Technical Report CMU-RI-TR-3, Carnegie
Mellon University, 1980.

» C. Harris and M. Stephens.” A combined corner and edge detector.”
In Alvey Vision Conference, 1988.

Cornerness

» Comparing a block of pixels to adjacent blocks in the horizontal,
vertical, and diagonal directions. If the difference is high in all
directions, the block is a good candidate to be a feature.



Harris corner detector

» Sum of squared differences obtained by a small shift of the block in
the direction of vector (u, v)

E(u,v) =Y wlx,y)(I(x+u,y +v) = 1(x,y))’ (1)
(x.y)



Harris corner detector

» Tylor expansion at (0,0)

E(u,v) (2)
= Y wlo) (H6) + 0 ) V)~ 1)) ()
(o)
= X wlx) (o) 4 v () (@



Harris matrix

H is a symmetric positive definite matrix defined by

S W) (BE6)’ Sy W) (Zxn) Sh(x, y))
Sy WOn) (2N Z)) Ty wley) (20n))
(6)

» The eigenvalues and eigenvectors of the Harris matrix H can be
analyzed to assess the cornerness of a block.



Cornerness
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Let the eigenvalues and eigenvectors be (A1, A;) and (e, &), with
A1 > Ao

» The block is nearly-constant-intensity: A\; &~ A\, =~ 0

> The block straddles a linear edge: The gradient will be perpendicular

to the edge direction for pixels near the edge. A\; > 0and A\ ~ 0
with e, along the edge.

» The block contains a corner or blob: Ay > 0 and \» > 0.



Cornerness

iso-response contours
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Avoiding explicitly computing the eigenvalues

» Quality measure
C = det(H) — rtrace(H)? (7)

To detect features in an image, we evaluate the quality measure at each
block in the image, and select feature points where the quality measure is
above a minimum threshold.

» ezcontour('x*y - 0.15%(x+y).” 2',[0 10], [0 10]);

» Non-maximal suppression




Implementation details

Estimating the gradients:

ol
00y) = ((x+1y) — I(x—1,y)) 2 (®)
An alternative: ol 96/ )
_ X,Y,0D
8X(X7.y)_l(x7y)* 6X (9)
where * indicates convolution, and
G(x.y.0) = 55 exp(— 55 (x* + ¥?)) (10)
X, y,0 = ro? Xp 252 X y

Intuition: Smoothing the image to remove high frequencies before taking
the derivative.
Spatially weighted window:

= ——e
W(X’y) 27TU,2 x 20;



Gaussian derivatives
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Good features to track

Investigating the properties of blocks of pixels that are good for tracking.
I(x+uy+v,t+1)=1I(x,y,t) Y(x,y) e W (12)

If we fix a block of pixels at time t and want to find its translation at
time t + 1, we minimize the cost function

Flu,v) =Y wloy)l((x+u,y +v,t+1) = I(x,y, 1)) (13)
(%)

where w(x,y) is 1 for pixels inside W and 0 otherwise.



Taylor series approximation

Setting the derivative equal to zero yields the linear system

0] [ S Wy, 2 (v, )
4 [z(x,y)w(xvy)(s(xyvrﬁ( r))] (s

=X
~t

where H is

Sy WLy )7 ey Wl ) (B y ) 2,y 1)
ey WGy 260, 8)) Dy W) (2o )2
(15)

KLT corners
min(/\l, )\2) > T (16)
KLT (Kanade-Lucas-Tomasi) tracker



Extended to affine transformation

Shi and Tomasi. “Good features to track.” CVPR 1994.

l(ax + by + u,ex+dy + v, t +1) = I(x,y,t) Y(x,y)eWw (17)



Extended to local photometric changes

Jin et al., “Real-time feature tracking and outlier rejection with changes
in illumination.” 1CCV 2001.

e-llax+by+ucx+dy+v,t+1)+f=1I(x,y,t) V(x,y) €W (18)



Harris-Laplace

Detecting features in scale space

Lindeberg. “Detecting salient blob-like image structures and their scales
with a scale-space primal sketch: A method for focus-of-attention.”
1JCV, 1993.

Lindeberg. “Feature detection with automatic scale selection.” 1JCV,
1998.



Harris-Laplace

The key concept of scale space is the convolution of an image with a

Gaussian function:
L(vaaUD) = G(X7y70D) * I(Xay)

where op € {O'()7 /(U()7 k20'0, . }

H(x,y,op,01) = G(x,y,0) * AL oL (ﬂy

where oL ol ) 96 )
vE X,Y,0D) _ X,Y,0D
x Ox - Ox #10xy)

» Differentiation and convolution are commutative



Scale normalization and scale invariance

High-resolution /(x, y) and low-resolution I’(x’, y’) with x = kx" and
y=ky'

If we consider a block centered at (x’,y’) with scale (op,07) in the
low-resolution image, it will correspond to the block centered at
(kx', ky") with scales (kop, koj) in the high-resolution image.
Substiguting everything and we have

1
H(x,y, kop, ka}) = pH’(X’,y', 0p, ) (22)

where H and H’ are the scale-dependent Harris matrices for high- and
low-resolution images.



Scale-normalized Harris matrix

(%)
H(x,y, kop, kor) = k*G(x,y, ko) * 8XL

where
oLy OL(x,y,kop) 0G(x,y,kop)

Ox ox o ox

*1(x,y)



Multi-scale Harris corners

Applying the Harris criterion

> Create the scale space of the image for a fixed set of scales
op € {Jo, kO’o, kzo'o, .. } with o; = aop.

» For each scale, compute the scale-normalized Harris matrix and find
all local maxima of the Harris criterion (quality measure) that are
above a certain threshold.

This approach can detect multiple features centered at the same location
(x,y) at different scales. However, we would often rather select a
characteristic scale that defines the scale at which a given feature is most
significant.



Maximum of the normalized Laplacian

Find o* that maximizes

PG(x,y,0) 0*°G(x,y,o
g ) ) o

NL(x,y,0) =

the ratio between the two characteristic scales is 2.64 similar to the
actual scale factor of 2.59 relating the images



Harris-Laplace features

Mikolajczyk and Schmid. “Indexing based on scale invariant interest
points.” ICCV 2001.

For each detected feature (say at scale k"), retain it only if its
normalized Laplacian is above a certain threshold, and it forms a local
maximum in the scale dimension, that is

NL(x,y,k"aq) > NL(x,y, k" too) and NL(x,y, k"o0) > NL(x,y, k" a0)
(26)




Scale-normalized Hessian matrix of second derivatives

Lindeberg. “Feature detection with automatic scale selection.” 1JCV,
1998.

62L(X7y700) 82’—()(7}’70'D)
[ 2 Ox? Oxdy
S(6Y,00) =D | g21(cy00)  *Lixyoo)
Oxdy Jy?

L(x,y,op) is the Gaussian-filtered image at the specified scale.

2 2
traceS(x,y,op) = 0% (3 L()(;;(};ao'D) n 9] L(g,y);,a@)

5 82L X, Y,0 82[- X, y,0 82L X, Y,0
detS(X’y’aD) B U4D ( (6)(}; D) (8}/}; D) B < (8X8yy D)

The absolute value of the Hessian’s trace is the same as the normalized

Laplacian.



Laplacian-of-Gaussian and Hessian-Laplace

trace: Laplacian-of-Gaussian (LoG)

» compute the trace at every (x, y,op) and find points where this
function of three parameters is locally maximal

» same function for both the spatial and scale dimensions

determinant: Hessian-Laplacian

» determinant for detection and trace for scale selection

> require that the trace and determinant are simultaneously
maximized: features are scale-covariant



SURF

Bay et al. “SURF: Speeded up robust features.” ECCV 2006.

» The discrete Gaussian filter used in the computation of the
scale-normalized Hessian could be approximated by box filters.
> Integral images

» Fast Hessian detector: Using box filters in an approximation of the
Hessian's determinant
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Difference-of-Gaussians

Lowe. “Distinctive images features from scale-invariant keypoints.” 1JCV,
2004. SIFT (Scale Invariant Feature Transform)

DoG detector
Laplacian-of-Gaussian could be approximated by Difference-of-Gaussians

96,
%N G(X,y,kU)—G(X,y,U)
oo ko —o (31)

(k —1)0*V?G ~ G(x,y, ko) — G(x,y,0) (32)



DoG detector

D(x,y,0) = (G(x,y, ko) — G(x,y,0))xl(x,y) = L(x,y, ko) — L(x,y, o)

Gaussian, o= 1 Gaussian, 0= 1.2

575
(b)

Yy X

Difference of Gaussians

(33)



Octave of a Gaussian scale space
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Additional refinements of DoG detector

> Local extrema with repect to both space and scale: larger or smaller
than all twenty-six neighbors

» Fitting a quadratic function to the twenty-seven values of D(x, y, o)
at and around the detected point (x;, y;, o;).

T

X X X
1
Q(x,y,0) = D(xi,yi,o1) +g" | y ts |y My (34)
ag g g

where g is the gradient and I is the Hessian of D with respect to
(x,y,0), evaluated at (x;, y;, 0;) using finite-difference approximations.
The updated location and scale (sub-pixel accuracy)

Xi
)A/i = _r_lg‘(x;,y,-,cr,-) (35)
of,



Additional refinements of DoG detector

> Reject features that have poor contrast or correspond to edges
rather than blobs.
> poor contrast: small Q
> edge-like: eigenvalues of the 2 x 2 spatial Hessian, one eigenvalue is
much larger than the other, using trace and determinant
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Affine-invariant regions

» Scale-invariant: Hessian-Laplace, LoG, DoG

Wide baseline

Suboptimal matches

Hessian-affine (yello elipses)
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Affine-invariant regions

Covariant: E(/) is an elliptical region produced by a detector in an image
I, and T is an affine transformation

T(E() = E(T(1)) (36)

[Lindeberg and Garding], [Baumberg], [Schaffalitzky and Zisserman],
[Mikolajczyk and Schmid]



Affine

adaptation:

1. Detect the feature point position and its characteristic scale

. Compute the local second-moment matrix H at the given scale (the

scale-normalized Harris matrix). Scale H so it has unit determinant.

. Compute the Cholesky factorization H = CCT, where C is a

lower-triangular matrix with non-negative diagonal elements. C is
sometimes called the matrix square root of H.

. Warp the image structure around the feature point using the linear

transformation C. liew (Xnew) = fo1a(Cxolq)

. Compute the local second-moment matrix H for the new image and

scale H so it has unit determinant.

. If H is sufficiently close to the identity (its eigenvalues are nearly

equal), stop. Otherwise, go to Step 3.



Harris-affine and Hessian-affine features

Mikolajczyk and Schmid.

Simultaneously detect feature point locations and corresponding
affine-invariant regions using an iterative algorithm

Re-estimate the location and characteristic scale of the feature point.



FAST Corners

Rosten and Drummond. “Fusing points and lines for high performance
tracking.” 1CCV 2005.

FAST: Features from Accelerated Segment Test
» A candidate pixel p is compared to a discretized circle of pixels
around it.

» If all the pixels on a contiguous arc of n pixels around the circle are
significantly darker or lighter than the candidate pixel, it is detected
as a feature.

» n=12 FAST-12: 1, 5, 9, 13 must pass the test




Using machine learning

» Create a database of a large number of pixel patches labeled as
corners or not-corners

> Learn the structure of a decision tree based on the intensities of the
sixteen surrounding pixels that was able to correctly classify all the
patches in this training set.

» On the average, fewer than three intensity comparisons need to be
made to determine if a candidate pixel is a FAST corner



Maximally Stable Extremal Regions (MSER)

Metas et al. “Robust wide-baseline stereo from maximally stable extremal
regions.” 1VC, 2004.

> An extremal region is defined as a connected subset of pixels 2 such
that for all p € Q and g adjacent to but not in Q, the image
intensities all satisfy either /(p) < I(q) or I(p) > /(q).

» Thresholding the image at a given pixel value
» Finding connected components as extremal regions

» Choosing extremal regions that are stable: as the threshold is varied,
the connected component changes little.

Qi — Q4|
€2
where {Q;} is a nested sequence of corresponding extremal regions

obtained by thresholding the image at intensity /, and |€Q;] is the area of
Q.

M(i) (37)



MSER

Thresholds 20, 125, and 200

I (]

M(i) is minimized at inensity level 99
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Feature descriptors

» To enable high-quality feature matching

» Features arising from the same 3D location in different views of the
same scene result in very similar descriptor vectors

» D(f) =~ D(Tf)

» feature detection to be covariant to geometric transformations,
feature description to be invariant to geometric transformations

» matching two descriptors from different images to form
correspondences



Support regions

» Scale-invariant features: Harris-Laplace, Hessian-Laplace, DoG,
detected at a characteristic scale

» Affine-covariant regions: MSER, Hessian-Affine

» Dominant gradient orientation of a patch: in SIFT, the orientation is
estimated by a histogram of pixel gradient orientations over the
support region of the scale-covariant circle.

The histogram h(¢) derived from
0(x,y) = M(x,y)G(x = X0,y — y0,1.50)




Compensating for affine illumination changes

» Compute the mean p and standard deviation s of the pixels in the
support region, and rescale the intensities of the patch by
loig — p

Inew = s (38)




Matching criteria

Correspondences
» Given two sets of feature descriptors A = {a',... a1} and
B={b',...,b"2} in two images, generate a list of feature
correspondences
{(c), c{,),j =1,..., N3}, which says that a% € A and b% € B are a
match.

Goal: to desin a matching criterion that produces a
high-quality set of correspondences

» few false matches and few missed matches



Matching criteria

Euclidean distance

" 1/2
Deuc(a, b) = |la = bll> = (Z(ai - bi)2> (39)

i=1
Sum-of-squared-differences distance (SSD)
Dssa(a, b) = [|a — b||3 = Deuc(a, b)? (40)

Mahalanobis distance

Dnahai(a.b) = ((a— b)T= " }(a— b))"/? (41)

where X is the covariance matrix



Matching criteria

Nearest neighbor
Use the method of nearest neighbors to find the match to a descriptor

ac A
b* =arg min D(a, b) (42)

Reducing ambiguities

SIFT: Nearest neighbor distance ratio: accept (a, b*) as a match if
D(a, b*)/D(a, b**) is below a threshold (e.g. 0.8), where b** is the
descriptor with the second closestdistance to a.



Matching criteria

Normalized cross-correlation (NCC)

n

NCC(a,b) = 3 = (ai = a)(bi — 1) (43)

i=1

where p, and s, are the mean and standard deviation of the elements of
a.

» often for matching raw blocks of intensities

» normalized for affine illumination changes, dot product between two
blocks

» computed very efficiently using FFT



Other criteria

Epipolar geometry constraint

RootSIFT

» L1 normalize SIFT
» Square root each element
» Hellinger kernel or Bhattacharyya coefficient

H(a, b) = Z Vaib; (44)

where Y7 a; = 1.
Arandjelovic and Zisserman. “Three things everyone should know to
improve object retrieval.” CVPR 2012.



Histogram-based descriptors

SIFT
GLOH
Shape contexts

Spin images



SIFT descriptor

» Estimating the location and scale o

» Deciding the dominant orientation

» Support region: oriented square at the feature location location, side
=60

» Spatially Gaussian weighted gradients

> 4 x 4 grid of cells, eight gradient orientations, 128-dimensional vector

» the gradient at each pixel contributes to multiple cells and multiple
histogram bin based on trilinear interpolation.

» normalizeded to unit length, zeroing out any extremely large values
(>0.2), and renormalizing to unit length.

1al]]
's

| 649 |~
PN
FRRN




Correspondences botained by SIFT




GLOH

Gradient Location and Orientation histogram
> log-polar grid
> sixteen angles
» 17 x 16 = 272 dimensions.
» dimensionality reduced to 128 using PCA

Mikolajczyk and Schmid. “A performance evaluation of local descriptors.”
PAMI, 2005.




DAISY

» Soft support regions

Winder and Brown. “Learning local image descriptors.” CVPR 2007.
Toal, Lepetit, and Fua. “DAISY: An efficient dense descriptor applied to
wide-baseline stereo.” PAMI, 2010.




Shape contexts

» log-polar location grid
» histogram of edge points, weighted by gradient of edge point

Belongie, Malik, Puzicha. “Shape matching and object recognition using
shape contexts.” PAMI, 2002.



Spin images

» Rotation-invariant

» histogram of quantized intensities for each of several rings around
the feature location

Johnson and Hebert. “Using spin images for efficient object recognition
in cluttered 3D scenes.” PAMI, 2002.

Lazebnik, Schmid, and Ponce. “A sparse texture representation using
local affine regions.” PAMI, 2005.



Invariant-based descriptors

» bypassing the estimation of rotation

» invariant function of the patch pixels with respect to a class of
geometric transformations, e.g., rotation or affine



Differential invariants

» combinations of increasingly higher-order derivatives of the
Gaussian-smoothed image L(x,y)

» sum of squared gradient magnitude
Lo\ (L)
(;)( oy ) (=5 (45)

» sum of Laplacians

O?L(x,y)  0?L(x,y)
> a2 T oy (46)

(x.¥)

> issues: accuracy in estimation of higher-order derivatives, noise

Schmid and Mohr. “Local grayvalue invariants for image retrieval.”
PAMI, 1997.



Moment invariants

» using both image intensities and spatial coordinates

» the (m, n)-th moment of a function defined over a region is the
average value of x™y"f(x,y)

» (0,0) moment?
» (0,1) and (1,0) moments?
» Schaffalitzky and Zisserman: a bank of complex filters whose

magnitude responses are invariant to rotation, similar to derivatives
of a Gaussian

Kmn(x,y) = (x +iy)™(x — iy)"G(x,y) (47)

Flusser. “On the independence of rotation moment invariants.” Pattern
Recognition, 2000.

Van Gool, Moons, and Ungureanu. “Affine photometric invariants for
planar intensity patterns.” ECCV 1996.

Schaffalitzky and Zisserman. “Multi-view matching for unordered image
sets, or ‘How do | organize my holiday snaps?’.” ECCV 2002.



Other approaches

Steerable filters

» sum of responses to a small number of basis filter at canonical
orientations.

Freeman and Adelson. “The design and use of steerable filters.” PAMI,
1991.

» Filter bank of Gaussian derivatives with respect to the angel

Mikolajczyk and Schmid. “Indexing based on scale invariant interest
points.” ICCV 2001.

SURF (Speeded-up robust featuers)

» 64-dimensional descriptor

Bay, Tuytelaars, Van Gool. “SURF: Speeded up robust features.” ECCV
2006.



Other approaches

PCA-SIFT
» PCA performed on the raw gradients of a scale- and
rotation-normalized patch.

» collect a large number of DoG keypoints and construct 41 x 41
patches;

» the x and y gradients at the interior pixels: 39 x 39 x 2 = 3042

Ke and Sukthankar. “PCA-SIFT: a more distinctive representation for
local image descriptors.” CVPR 2004.



Evaluating detectors and descriptors

Repeatability score

repeated detections

RS = min(Ny, o)

Matching score

correct nearest-neighbor matches
MS = &

min(Nl, NQ)

» precision and recall

.. correct matches
precision = ——M ———
total matches

correct matches
recall =

true correspondences

(48)

(49)



Recent detectors and descriptors

BRIEF, BRISK, FREAK

ORB (Oriented FAST and Rotated BRIEF)

SIFER/D-SIFER (Scale-Invariant Feature detector with Error
Resilience)

FRIF (Fast Robust Invariant Feature)



Color detectors and descriptors



Artificial markers

QR codes

ARToolKit/ARToolKitPlus
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