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What is a feature

I Track a point on a set as a camera moves around during a shot
I Automatically estimate the 3D path of a camera as it moves around

a scene: matchmoving

I Not every point in the scene is a good choice for tracking

Features: regions of an image that can be reliably located in
other images of the same scene

I Interest points, keypoints, tie points

Detecting, describing, matching, and tracking



Feature tracking

A subset of the more general problem of visual tracking

Di�ereces

I Visual trackers maintain a probabilistic representation of an object's
state, e.g., Kalman �lters

I Wide-baseline case: images are taken from cameras that are
physically far apart, whereas visual tracking generally assumes the
camera moves only slightly between images



Feature detection and description

Detector

I deciding which image regions are su�ciently distinctive

Descriptor

I deciding how to represent the image information inside each region
for later matching



Properties of local features

A square block of pixels centered at a certain location in an
image

I Repeatability

I Aperture problem

I Nearly-constant-intensity patch, edge, corner, blob



Harris corners

I H. Moravec.� Obstacle avoidance and navigation in the real world by
a seeing robot rover.� Technical Report CMU-RI-TR-3, Carnegie
Mellon University, 1980.

I C. Harris and M. Stephens.� A combined corner and edge detector.�
In Alvey Vision Conference, 1988.

Cornerness

I Comparing a block of pixels to adjacent blocks in the horizontal,
vertical, and diagonal directions. If the di�erence is high in all
directions, the block is a good candidate to be a feature.



Harris corner detector

I Sum of squared di�erences obtained by a small shift of the block in
the direction of vector (u, v)

E (u, v) =
∑
(x,y)

w(x , y)(I (x + u, y + v)− I (x , y))2 (1)



Harris corner detector

I Tylor expansion at (0, 0)

E (u, v) (2)

=
∑
(x,y)

w(x , y)

(
I (x , y) + u

∂I

∂x
(x , y) + v

∂I

∂y
(x , y)− I (x , y)

)2

(3)

=
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(x,y)

w(x , y)

(
u
∂I

∂x
(x , y) + v

∂I

∂y
(x , y)

)2
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v

]T
H
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Harris matrix

H is a symmetric positive de�nite matrix de�ned by ∑
(x,y) w(x , y)

(
∂I
∂x (x , y)

)2 ∑
(x,y) w(x , y)

(
∂I
∂x (x , y) ∂I∂y (x , y)

)
∑

(x,y) w(x , y)
(
∂I
∂x (x , y) ∂I∂y (x , y)

) ∑
(x,y) w(x , y)

(
∂I
∂y (x , y)

)2


(6)

I The eigenvalues and eigenvectors of the Harris matrix H can be
analyzed to assess the cornerness of a block.



Cornerness

Let the eigenvalues and eigenvectors be (λ1, λ2) and (e1, e2), with
λ1 ≥ λ2.

I The block is nearly-constant-intensity: λ1 ≈ λ2 ≈ 0

I The block straddles a linear edge: The gradient will be perpendicular
to the edge direction for pixels near the edge. λ1 > 0 and λ2 ≈ 0
with e2 along the edge.

I The block contains a corner or blob: λ1 > 0 and λ2 > 0.



Cornerness



Avoiding explicitly computing the eigenvalues

I Quality measure

C = det(H)− κ trace(H)2 (7)

To detect features in an image, we evaluate the quality measure at each
block in the image, and select feature points where the quality measure is
above a minimum threshold.

I ezcontour('x*y - 0.15*(x+y).� 2',[0 10], [0 10]);

I Non-maximal suppression



Implementation details

Estimating the gradients:

∂I

∂x
(x , y) = (I (x + 1, y)− I (x − 1, y)) /2 (8)

An alternative:
∂I

∂x
(x , y) = I (x , y) ∗ ∂G (x , y , σD)

∂x
(9)

where ∗ indicates convolution, and

G (x , y , σ) =
1

2πσ2
exp(− 1

2σ2
(x2 + y2)) (10)

Intuition: Smoothing the image to remove high frequencies before taking
the derivative.
Spatially weighted window:

w(x , y) =
1

2πσ2I
exp(− 1

2σ2I
((x − x0)2 + (y − y0)2)) (11)



Gaussian derivatives



Good features to track

Investigating the properties of blocks of pixels that are good for tracking.

I (x + u, y + v , t + 1) = I (x , y , t) ∀(x , y) ∈ W (12)

If we �x a block of pixels at time t and want to �nd its translation at
time t + 1, we minimize the cost function

F (u, v) =
∑
(x,y)

w(x , y)I ((x + u, y + v , t + 1)− I (x , y , t))2 (13)

where w(x , y) is 1 for pixels inside W and 0 otherwise.



Taylor series approximation

Setting the derivative equal to zero yields the linear system

H

[
u

v

]
= −

[ ∑
(x,y) w(x , y)( ∂I∂x (x , y , t) ∂I∂t (x , y , t))∑
(x,y) w(x , y)( ∂I∂y (x , y , t) ∂I∂t (x , y , t))

]
(14)

where H is[ ∑
(x,y) w(x , y)( ∂I∂x (x , y , t))2

∑
(x,y) w(x , y)( ∂I∂x (x , y , t) ∂I∂y (x , y , t))∑

(x,y) w(x , y)( ∂I∂x (x , y , t) ∂I∂y (x , y , t))
∑

(x,y) w(x , y)( ∂I∂y (x , y , t))2

]
(15)

KLT corners

min(λ1, λ2) > τ (16)

KLT (Kanade-Lucas-Tomasi) tracker



Extended to a�ne transformation

Shi and Tomasi. �Good features to track.� CVPR 1994.

I (ax + by + u, cx + dy + v , t + 1) = I (x , y , t) ∀(x , y) ∈ W (17)



Extended to local photometric changes

Jin et al., �Real-time feature tracking and outlier rejection with changes
in illumination.� ICCV 2001.

e · I (ax + by + u, cx + dy + v , t + 1) + f = I (x , y , t) ∀(x , y) ∈ W (18)



Harris-Laplace

Detecting features in scale space
Lindeberg. �Detecting salient blob-like image structures and their scales
with a scale-space primal sketch: A method for focus-of-attention.�
IJCV, 1993.
Lindeberg. �Feature detection with automatic scale selection.� IJCV,
1998.



Harris-Laplace

The key concept of scale space is the convolution of an image with a
Gaussian function:

L(x , y , σD) = G (x , y , σD) ∗ I (x , y) (19)

where σD ∈ {σ0, kσ0, k2σ0, . . .}.

H(x , y , σD , σI ) = G (x , y , σI ) ∗

 (∂L∂x )2 ∂L
∂x

∂L
∂y

∂L
∂x

∂L
∂y

(
∂L
∂y

)2
 (20)

where
∂L

∂x
=
∂L(x , y , σD)

∂x
=
∂G (x , y , σD)

∂x
∗ I (x , y) (21)

I Di�erentiation and convolution are commutative



Scale normalization and scale invariance

High-resolution I (x , y) and low-resolution I ′(x ′, y ′) with x = kx ′ and
y = ky ′.
If we consider a block centered at (x ′, y ′) with scale (σ′D , σ

′
I ) in the

low-resolution image, it will correspond to the block centered at
(kx ′, ky ′) with scales (kσ′D , kσ

′
I ) in the high-resolution image.

Substiguting everything and we have

H(x , y , kσ′D , kσ
′
I ) =

1

k2
H ′(x ′, y ′, σ′D , σ

′
I ) (22)

where H and H ′ are the scale-dependent Harris matrices for high- and
low-resolution images.



Scale-normalized Harris matrix

Ĥ(x , y , kσD , kσI ) = k2G (x , y , kσI ) ∗


(
∂Lk
∂x

)2
∂Lk
∂x

∂Lk
∂y

∂Lk
∂x

∂Lk
∂y

(
∂Lk
∂y

)2
 (23)

where
∂Lk
∂x

=
∂L(x , y , kσD)

∂x
=
∂G (x , y , kσD)

∂x
∗ I (x , y) (24)



Multi-scale Harris corners

Applying the Harris criterion

I Create the scale space of the image for a �xed set of scales
σD ∈ {σ0, kσ0, k2σ0, . . .} with σI = aσD .

I For each scale, compute the scale-normalized Harris matrix and �nd
all local maxima of the Harris criterion (quality measure) that are
above a certain threshold.

This approach can detect multiple features centered at the same location
(x , y) at di�erent scales. However, we would often rather select a
characteristic scale that de�nes the scale at which a given feature is most
signi�cant.



Maximum of the normalized Laplacian

Find σ∗ that maximizes

NL(x , y , σ) =

∣∣∣∣σ2(∂2G (x , y , σ)

∂x2
+
∂2G (x , y , σ)

∂y2

)
∗ I (x , y)

∣∣∣∣ (25)

the ratio between the two characteristic scales is 2.64 similar to the
actual scale factor of 2.59 relating the images



Harris-Laplace features

Mikolajczyk and Schmid. �Indexing based on scale invariant interest
points.� ICCV 2001.
For each detected feature (say at scale knσ0), retain it only if its
normalized Laplacian is above a certain threshold, and it forms a local
maximum in the scale dimension, that is

NL(x , y , knσ0) > NL(x , y , kn−1σ0) and NL(x , y , knσ0) > NL(x , y , kn+1σ0)
(26)



Scale-normalized Hessian matrix of second derivatives

Lindeberg. �Feature detection with automatic scale selection.� IJCV,
1998.

Ŝ(x , y , σD) = σ2D

[
∂2L(x,y ,σD)

∂x2
∂2L(x,y ,σD)

∂x∂y
∂2L(x,y ,σD)

∂x∂y
∂2L(x,y ,σD)

∂y2

]
(27)

L(x , y , σD) is the Gaussian-�ltered image at the speci�ed scale.

traceŜ(x , y , σD) = σ2D

(
∂2L(x , y , σD)

∂x2
+
∂2L(x , y , σD)

∂y2

)
(28)

detŜ(x , y , σD) = σ4D

(
∂2L(x , y , σD)

∂x2
∂2L(x , y , σD)

∂y2
−
(
∂2L(x , y , σD)

∂x∂y

)2
)

(29)
The absolute value of the Hessian's trace is the same as the normalized
Laplacian.



Laplacian-of-Gaussian and Hessian-Laplace

trace: Laplacian-of-Gaussian (LoG)

I compute the trace at every (x , y , σD) and �nd points where this
function of three parameters is locally maximal

I same function for both the spatial and scale dimensions

determinant: Hessian-Laplacian

I determinant for detection and trace for scale selection

I require that the trace and determinant are simultaneously
maximized: features are scale-covariant



SURF

Bay et al. �SURF: Speeded up robust features.� ECCV 2006.

I The discrete Gaussian �lter used in the computation of the
scale-normalized Hessian could be approximated by box �lters.

I Integral images

I Fast Hessian detector: Using box �lters in an approximation of the
Hessian's determinant



Di�erence-of-Gaussians

Lowe. �Distinctive images features from scale-invariant keypoints.� IJCV,
2004. SIFT (Scale Invariant Feature Transform)

DoG detector
Laplacian-of-Gaussian could be approximated by Di�erence-of-Gaussians

∂G

∂σ
= σ∇2G (30)

∂G

∂σ
≈ G (x , y , kσ)− G (x , y , σ)

kσ − σ
(31)

(k − 1)σ2∇2G ≈ G (x , y , kσ)− G (x , y , σ) (32)



DoG detector

D(x , y , σ) = (G (x , y , kσ)−G (x , y , σ))∗ I (x , y) = L(x , y , kσ)−L(x , y , σ)
(33)



Octave of a Gaussian scale space

k = 21/S , S = 3, σ0 = 1.6



Additional re�nements of DoG detector

I Local extrema with repect to both space and scale: larger or smaller
than all twenty-six neighbors

I Fitting a quadratic function to the twenty-seven values of D(x , y , σ)
at and around the detected point (xi , yi , σi ).

Q(x , y , σ) = D(xi , yi , σi ) + gT

 x

y

σ

+
1

2

 x

y

σ

T Γ

 x

y

σ

 (34)

where g is the gradient and Γ is the Hessian of D with respect to
(x , y , σ), evaluated at (xi , yi , σi ) using �nite-di�erence approximations.
The updated location and scale (sub-pixel accuracy) x̂i

ŷi
σ̂i

 = −Γ−1g |(xi ,yi ,σi ) (35)



Additional re�nements of DoG detector

I Reject features that have poor contrast or correspond to edges
rather than blobs.

I poor contrast: small Q
I edge-like: eigenvalues of the 2× 2 spatial Hessian, one eigenvalue is

much larger than the other, using trace and determinant



A�ne-invariant regions

I Scale-invariant: Hessian-Laplace, LoG, DoG

Wide baseline
Suboptimal matches

Hessian-a�ne (yello elipses)



A�ne-invariant regions

Covariant: E (I ) is an elliptical region produced by a detector in an image
I , and T is an a�ne transformation

T (E (I )) = E (T (I )) (36)

[Lindeberg and Garding], [Baumberg], [Scha�alitzky and Zisserman],
[Mikolajczyk and Schmid]



A�ne adaptation:

1. Detect the feature point position and its characteristic scale

2. Compute the local second-moment matrix H at the given scale (the
scale-normalized Harris matrix). Scale H so it has unit determinant.

3. Compute the Cholesky factorization H = CCT , where C is a
lower-triangular matrix with non-negative diagonal elements. C is
sometimes called the matrix square root of H.

4. Warp the image structure around the feature point using the linear
transformation C . Inew(xnew) = Iold(Cxold)

5. Compute the local second-moment matrix H for the new image and
scale H so it has unit determinant.

6. If H is su�ciently close to the identity (its eigenvalues are nearly
equal), stop. Otherwise, go to Step 3.



Harris-a�ne and Hessian-a�ne features

Mikolajczyk and Schmid.
Simultaneously detect feature point locations and corresponding
a�ne-invariant regions using an iterative algorithm
Re-estimate the location and characteristic scale of the feature point.



FAST Corners

Rosten and Drummond. �Fusing points and lines for high performance
tracking.� ICCV 2005.

FAST: Features from Accelerated Segment Test

I A candidate pixel p is compared to a discretized circle of pixels
around it.

I If all the pixels on a contiguous arc of n pixels around the circle are
signi�cantly darker or lighter than the candidate pixel, it is detected
as a feature.

I n = 12 FAST-12: 1, 5, 9, 13 must pass the test



Using machine learning

I Create a database of a large number of pixel patches labeled as
corners or not-corners

I Learn the structure of a decision tree based on the intensities of the
sixteen surrounding pixels that was able to correctly classify all the
patches in this training set.

I On the average, fewer than three intensity comparisons need to be
made to determine if a candidate pixel is a FAST corner



Maximally Stable Extremal Regions (MSER)

Metas et al. �Robust wide-baseline stereo from maximally stable extremal
regions.� IVC, 2004.

I An extremal region is de�ned as a connected subset of pixels Ω such
that for all p ∈ Ω and q adjacent to but not in Ω, the image
intensities all satisfy either I (p) < I (q) or I (p) > I (q).

I Thresholding the image at a given pixel value

I Finding connected components as extremal regions

I Choosing extremal regions that are stable: as the threshold is varied,
the connected component changes little.

M(i) =
|Ωi+1 − Ωi−1|

|Ωi |
(37)

where {Ωi} is a nested sequence of corresponding extremal regions
obtained by thresholding the image at intensity i , and |Ωi | is the area of
Ωi .



MSER

Thresholds 20, 125, and 200

M(i) is minimized at inensity level 99



Feature descriptors

I To enable high-quality feature matching

I Features arising from the same 3D location in di�erent views of the
same scene result in very similar descriptor vectors

I D(f ) ≈ D(Tf )

I feature detection to be covariant to geometric transformations,
feature description to be invariant to geometric transformations

I matching two descriptors from di�erent images to form
correspondences



Support regions

I Scale-invariant features: Harris-Laplace, Hessian-Laplace, DoG,
detected at a characteristic scale

I A�ne-covariant regions: MSER, Hessian-A�ne

I Dominant gradient orientation of a patch: in SIFT, the orientation is
estimated by a histogram of pixel gradient orientations over the
support region of the scale-covariant circle.

The histogram h(θ) derived from
θ(x , y) = M(x , y)G (x − x0, y − y0, 1.5σ)



Compensating for a�ne illumination changes

I Compute the mean µ and standard deviation s of the pixels in the
support region, and rescale the intensities of the patch by

Inew =
Iold − µ

s
(38)



Matching criteria

Correspondences

I Given two sets of feature descriptors A = {a1, . . . , aN1} and
B = {b1, . . . , bN2} in two images, generate a list of feature
correspondences

{(c ja, c
j
b), j = 1, . . . ,N3}, which says that ac

j
a ∈ A and bc

j

b ∈ B are a
match.

Goal: to desin a matching criterion that produces a
high-quality set of correspondences

I few false matches and few missed matches



Matching criteria

Euclidean distance

Deuc(a, b) = ‖a− b‖2 =

(
n∑

i=1

(ai − bi )
2

)1/2

(39)

Sum-of-squared-di�erences distance (SSD)

Dssd(a, b) = ‖a− b‖22 = Deuc(a, b)2 (40)

Mahalanobis distance

Dmahal(a, b) =
(
(a− b)TΣ−1(a− b)

)1/2
(41)

where Σ is the covariance matrix



Matching criteria

Nearest neighbor
Use the method of nearest neighbors to �nd the match to a descriptor
a ∈ A

b∗ = argmin
b∈B

D(a, b) (42)

Reducing ambiguities
SIFT: Nearest neighbor distance ratio: accept (a, b∗) as a match if
D(a, b∗)/D(a, b∗∗) is below a threshold (e.g. 0.8), where b∗∗ is the
descriptor with the second closestdistance to a.



Matching criteria

Normalized cross-correlation (NCC)

NCC (a, b) =
n∑

i=1

1

sasb
(ai − µa)(bi − µb) (43)

where µa and sa are the mean and standard deviation of the elements of
a.

I often for matching raw blocks of intensities

I normalized for a�ne illumination changes, dot product between two
blocks

I computed very e�ciently using FFT



Other criteria

Epipolar geometry constraint

RootSIFT

I L1 normalize SIFT

I Square root each element

I Hellinger kernel or Bhattacharyya coe�cient

H(a, b) =
n∑

i=1

√
aibi (44)

where
∑n

i=1
ai = 1.

Arandjelovic and Zisserman. �Three things everyone should know to
improve object retrieval.� CVPR 2012.



Histogram-based descriptors

SIFT

GLOH

Shape contexts

Spin images



SIFT descriptor

I Estimating the location and scale σ

I Deciding the dominant orientation

I Support region: oriented square at the feature location location, side
= 6σ

I Spatially Gaussian weighted gradients

I 4× 4 grid of cells, eight gradient orientations, 128-dimensional vector

I the gradient at each pixel contributes to multiple cells and multiple
histogram bin based on trilinear interpolation.

I normalizeded to unit length, zeroing out any extremely large values
(>0.2), and renormalizing to unit length.



Correspondences botained by SIFT



GLOH

Gradient Location and Orientation histogram

I log-polar grid

I sixteen angles

I 17× 16 = 272 dimensions.

I dimensionality reduced to 128 using PCA

Mikolajczyk and Schmid. �A performance evaluation of local descriptors.�
PAMI, 2005.



DAISY

I Soft support regions

Winder and Brown. �Learning local image descriptors.� CVPR 2007.
Toal, Lepetit, and Fua. �DAISY: An e�cient dense descriptor applied to
wide-baseline stereo.� PAMI, 2010.



Shape contexts

I log-polar location grid

I histogram of edge points, weighted by gradient of edge point

Belongie, Malik, Puzicha. �Shape matching and object recognition using
shape contexts.� PAMI, 2002.



Spin images

I Rotation-invariant

I histogram of quantized intensities for each of several rings around
the feature location

Johnson and Hebert. �Using spin images for e�cient object recognition
in cluttered 3D scenes.� PAMI, 2002.
Lazebnik, Schmid, and Ponce. �A sparse texture representation using
local a�ne regions.� PAMI, 2005.



Invariant-based descriptors

I bypassing the estimation of rotation

I invariant function of the patch pixels with respect to a class of
geometric transformations, e.g., rotation or a�ne



Di�erential invariants

I combinations of increasingly higher-order derivatives of the
Gaussian-smoothed image L(x , y)

I sum of squared gradient magnitude∑
(x,y)

(
∂L(x , y)

∂x

)2

+

(
∂L(x , y)

∂y

)2

(45)

I sum of Laplacians∑
(x,y)

∂2L(x , y)

∂x2
+
∂2L(x , y)

∂y2
(46)

I issues: accuracy in estimation of higher-order derivatives, noise

Schmid and Mohr. �Local grayvalue invariants for image retrieval.�
PAMI, 1997.



Moment invariants

I using both image intensities and spatial coordinates

I the (m, n)-th moment of a function de�ned over a region is the
average value of xmynf (x , y)

I (0, 0) moment?

I (0, 1) and (1, 0) moments?

I Scha�alitzky and Zisserman: a bank of complex �lters whose
magnitude responses are invariant to rotation, similar to derivatives
of a Gaussian

Kmn(x , y) = (x + iy)m(x − iy)nG (x , y) (47)

Flusser. �On the independence of rotation moment invariants.� Pattern
Recognition, 2000.
Van Gool, Moons, and Ungureanu. �A�ne photometric invariants for
planar intensity patterns.� ECCV 1996.
Scha�alitzky and Zisserman. �Multi-view matching for unordered image
sets, or `How do I organize my holiday snaps?'.� ECCV 2002.



Other approaches

Steerable �lters

I sum of responses to a small number of basis �lter at canonical
orientations.

Freeman and Adelson. �The design and use of steerable �lters.� PAMI,
1991.

I Filter bank of Gaussian derivatives with respect to the angel

Mikolajczyk and Schmid. �Indexing based on scale invariant interest
points.� ICCV 2001.

SURF (Speeded-up robust featuers)

I 64-dimensional descriptor

Bay, Tuytelaars, Van Gool. �SURF: Speeded up robust features.� ECCV
2006.



Other approaches

PCA-SIFT

I PCA performed on the raw gradients of a scale- and
rotation-normalized patch.

I collect a large number of DoG keypoints and construct 41× 41
patches;

I the x and y gradients at the interior pixels: 39× 39× 2 = 3042

Ke and Sukthankar. �PCA-SIFT: a more distinctive representation for
local image descriptors.� CVPR 2004.



Evaluating detectors and descriptors

Repeatability score

RS =
repeated detections

min(N1,N2)
(48)

Matching score

MS =
correct nearest-neighbor matches

min(N1,N2)
(49)

I precision and recall

precision =
correct matches

total matches
(50)

recall =
correct matches

true correspondences
(51)



Recent detectors and descriptors

BRIEF, BRISK, FREAK

ORB (Oriented FAST and Rotated BRIEF)

SIFER/D-SIFER (Scale-Invariant Feature detector with Error
Resilience)

FRIF (Fast Robust Invariant Feature)



Color detectors and descriptors



Arti�cial markers

QR codes

ARToolKit/ARToolKitPlus

ARTag
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